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Chapter 1 Entropy and Mutual Information

1.1 An Introduction of Information
1.2 Entropy

1.3 Mutual Information

1.4 Further Results on Information Theory



% 1.1 An Introduction of Information

Information Theory, founded by Claude E. Shannon (1916-2001)

via "A Mathematical Theory of Communication," Bell System Technical Journal, 1948.

* What is information?

 How to measure information?

* How to represent information?

 How to transmit information and its limit?



S 1.1 An Introduction of Information

What is information?

Let us look at the following sentences
1) T will be one year older next year.

No information Boring!
2) I was born in 1993.
Some information Being frank!
3) I'was born in 1990s.
More information Interesting, so which year?

Observation 1: Information comes from uncertainty.

Observation 2: The number of possibilities should be linked to the information.



% 1.1 An Introduction of Information

Let us do the following game

Throw a die once

o o You have 6 possible outcomes.

"3/ {1,2,3,4,5,6)

Throw three dies

You have 63 possible outcomes.
{(1,1,1),(1,1,2), (1, 1,3), (1, 1, 4)

oooooo

oooooo

(6, 6, 3),(6,6,4),(6,6,5),(6,6,6)}

Observation 3: Information should be ‘additive’.



S 1.1 An Introduction of Information

Let us look at the following problem

Q: If there are 120 students in our class, and we would like to use bits to distinguish
cach of them, how many bits do we need?

Solution: 120 possibilities requires
log, 120 = 6.907 bits

We need at least 7 bits to represent each of us.

Q: There are 7 billion people on our planet, how many bits do we need?
Observation 4: We can use ‘logarithm’ to scale down the a huge amount of possibilities.

Observation 5: Bit (=binary+digit) permutations are used to represent all possibilities.



% 1.1 An Introduction of Information

Finally, let us look into the following game

Pick one ball from the hat randomly,
The probability of picking up a white ball, % (25%).
Representing the probability needs
log, — =2 bits
92774
The probability of picking up a black ball, 2 (75%)

Representing the probability needs

log, -~ = 0.415 bits

On average, how many bits do we need to represent an outcome?
1 1 3 1 :
- — 4= — =
4|0g2 T 4|0g2 /2 0.811 bits

Observation 6: Measure of information should consider the probabilities of various
possible events.



§ 1.1 An Introduction of Information

Events: 1, 2, ..., N
Probabilities: Py, P,, ..., Py

—1 —1 —1
1log, 17+ slogy, 27+ ..+ logs




§ 1.1 An Introduction of Information

* Information: knowledge not precisely known by the recipient, as it is a measure of

uncertainty.
« Amount of information  probability of occurance ~1
E.g., given messages 1, ,..,  withprob. of occur. 1, »,..,
1+ -+ ..+ =1 ,measure of amount of information carried by each
message 1s
=log 1, =12 ..,
=2, in bits
=, 1n nats
= 10, in Hartley.

* Properties of the measurement

1) I(M;) - 0, if P-1;

2) 1(M;) =0, when 0< P, <1;

3) IMy) >1(M;), if P >P

4) Given M; and M; are statistically independent,
1(M;&M;) = I(M;) + 1(M)).



§ 1.1 An Introduction of Information
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§ 1.2 Entropy

How to measure information?

Given a source vector of length . It has N possible symbols 4, 5,..., ,witha
probability of occurrence of 1, »,,.., ,respectively.

To represent the source vector, we need

— =1 1
= log, bits

On average, how many bits do we need for a source symbol?

-= _, log; 7' bits/symbol

is called the source entropy - average amount of information per source symbol.
It can also be understood as the expectation of function log, ~*

= log, ~! bits/symbol




§ 1.2 Entropy

Example 1.1: A source vector contains symbols of four possible outcomes

, + , . They occur with probabilities of = %, = é,

Wik

= respectively.

Entropy of the source vector can be determined as

~ 1I 1,2 1 1 1
092772 319927737 12'%% 775
= 1.856 bits/symbol
— — — 1
Note: If = = = =3

= 4.310g, 4 = 2 bits/symbol



§ 1.2 Entropy

Entropy of a binary source: The vector has only two possible symbols, 1.e., 0 and 1. Let
O denote the probability of a source symbol being 0, and 1 denote the probability

of a source symbol being 1, we have

= 0 -logp 07'+ 11log, 171

or
= 0-log, 01+ 1— 0 -log, 1— 0 °

T Binary Entropy Function H (x), x {0, 1}
14

Binary Entropy Function ol
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§ 1.2 Entropy

W]
Entropy of different bases can be interchanged by

= log

Proof:



§ 1.2 Entropy

W]
e Entropy for two random variables X and Y.

e Realizations of X and Y are x and y.
e Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, y),

. == ,log, ,

=— |ng :
Condition Entropy

== log,



§ 1.2 Entropy

EEESS-—
The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

Proof:

+ If and are independent,
+ Hence,
= +
, log,
, logy
. log, - . log

log, — ,log,



§ 1.2 Entropy

The above chain rule can be extended to

(1) : = + :
(2) 1y 214 — =1 —1y =2y 1
Proof:
1, 2 = 1t 2 1
1, 20 3 = 1 F 2, 3 1
= 1 2 1 T 3 2 1
1r 21 e = 1t 2 1 T 3 221 t..°F —1r =21 1



§ 1.3 Mutual Information

e Two random variables X and Y.

e Realizations of X and Y are x and y.

e Distributions of X and Y are P(x) and P(y).
e Joint distribution of X and Y is P(x, y).

e Conditional distribution of X 1s

Mutual Information between X and Y:




§ 1.3 Mutual Information

Note: If X and Y are independent, = D - =0.



§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:
= -+ —_

Proof:

— ., log,

Note: The above proof also shows the symmetry of mutual information as



§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:

This relationship can be visualized in the Venn diagram

H(X) H(Y)

H(X,Y)

Fig. A Venn diagram



§ 1.3 Mutual Information

Corollary:

This can also be concluded using the chain rule.
Notes: 1) 0= ; =min ,
2) If , ;=
Similarly if , :
3) 5 = — =
Entropy is also called self information

H(X) H(Y)

H(X,Y)

Fig. A Venn diagram



§ 1.3 Mutual Information

The chain rules for arbitrary number of variables

For entropy,

1y 2y e - 1 T 2 1 T 3

For mutual information,

1 2 ey 1 - 1: PAIEEY) 1:
— =1 1r 2ven =1
- =1 1 2000 -1

1

2y e+

1

21 e

-1

-1

_1,

I, P



§ 1.3 Mutual Information

Mutual Information of a Channel

Source L) Channel —Y> Sink

- Consider X is the transmitted signal, Y is the received signal.
- Yis a variant of X where the discrepancy is introduced by channel.

How much we don’t know ‘ ‘ How much we still don’t know
BEFORE the channel observations. U_ AFTER the channel observations.

How much information is carried by the channel, and this is called the
mutual information of the channel, denoted as :

Note: Mutual information : describes the amount of information one variable X
contains about the other Y, or vice versa as in ;



§ 1.3 Mutual Information

W]
Example 1.2: Given the binary symmetric channel shown as

1 0.8 1

We know P(x =0) =03, P(x=1)=0.7, P(y=1|x =1) = 0.8,
P(y=1|x=0)=10.2, Py=0|x=1) =0.2 and P(y = 0|x = 0) = 0.8.
Please determine the mutual information of the channel.

Solution: We may determine the channel mutual information by —
- Entropy of the binary source is
=— =0 log, =0 — =1 log, =1
_ L 1og, —
= O3|092 03 + 0.7 IOgZ 0.7
= 0.881 bits/symbol



§ 1.3 Mutual Information

|
- With P(x) and P(y|x), we know

=1 =1 =1 =1 + =1 =0 =0

o
o
N

0.38



§ 1.3 Mutual Information

* Hence, the conditional entropy is:

= =0, =0 log,

+ =1, =0 log,

+ =0, =1 log,

1 1
=0 =0 =1
! + =1, =1 log, !
=0 =1 ’ =1
= 0.24log, i + 0.14log, i + 0.06log, i + 0.56lo09, i
0.63 0.37 0.10 0.90

= 0.644 bits/sym.

 The mutual information is:

;= — = 0.237 bits/sym.

Note: You may try to solve the same problem through



S 1.4 Further Results on Information Theory

Relative Entropy: Assume X and ~ are two random variables with realizations of x and ~,
respectively. They aim to describe the same event, with probability mass functions of
and |, respectively. Their relative entropy is

A

, = log, —
supp
= log,—
- It 1s often called the Kullback-Leibler distance between two distributions and

A

- It is a measure of inefficiency by assuming a distribution ~ when the true

distribution is . E.g., an event can be described by an average length of
bits. However, if we assume its distribution is ~ , we will need an average length
of + .7 bits to describe it.

- It is not symmetric as , T # o



S 1.4 Further Results on Information Theory

Example 1.3:
Let A B C D
1 1 1 1
4 2 8 8
~ 3 2 1 1
8 5 10 8
= 1.75 bits/symbol ~ = 1.805 bits/symbol
R 1I 1/4 1I 1/2 1I 1/8 lI 1/8
’ 092378 7 5'%92575 T 5927710 T 8'%%2 178
If = , o extra bits;
If < , less extra bits;
If > , more extra bits.



Corollary 1: When = 7, , ~ =0.
Corollary 2: .- =0.
Proof: — 0 = log, ——
supp
< ——1 log,
supp
— = log,
supp supp
< 1-—1 log,
=0

IT Inequality: Given >l1land >0

1
l1——log =<log = -—1log




S 1.4 Further Results on Information Theory

e L e ~ 1
Example 1.4: The true distribution 1s given. If we assume a distribution of ==
for =1,2,.., todescribe the same event, then

.~ = logg—= = log;

= log, + log,

= log, ~ ! — log, -1

A



S 1.4 Further Results on Information Theory

Convex Function: A function is convex (1'1) over the interval (a, b) if 1, » ,
and0 = <1,

1+ 1= 5 = 1 + 1-— 2 .

It 1s strictly convex if the equality holds when =O0or =1.

- If is convex, — is concave ([4]).




S 1.4 Further Results on Information Theory

|
- Example 1.5: log, Lis strictly convex over 0, oo .

Let =2, »=5and =0.5,
1

09295 %2 +05x5  +8¢

1 1
0.5 % Iogzz + 0.5 % Iogzg =—1.66

When =0or =1, the equality holds.

log,(x) | |
| s 7Iogz(1/x)

Note that log, is concave.

h A b N A o a2 N w Ao
T T T 1 § T T T




S 1.4 Further Results on Information Theory

Jensen’s Inequality: If function is convex, then

<

Proof: With two mass points 1 and », and distributions of ; and 5, the convexity implies

11+ 22 =1 1+ 2 2.

Assume this 1s also true for — 1 mass points that
11+ + 94 a9 =21 1+ + 4 .
For k£ mass points that substantiate :_11 + =1, we have

11+ + 4 4 + = 1+ + =



\Y

Note: If function 1S concave,

IA




S 1.4 Further Results on Information Theory

- Jensen’s inequality can help prove some properties on entropy and mutual information.

- Corollary 2: =0
Proof: -
— , S = |ng -
supp
< logs ”
supp
<log,1 =0
- Corollary3: ; =0
Proof:
;= . log
— 1 ] 2 0
;= 0 onlyif .= , 1.e., X'and Y are independent.



S 1.4 Further Results on Information Theory

- Corollary 4 (Maximum Entropy Distribution):

Given variable 1: 2, ,withadistribution of 4, 5,.., . We have
< log,
Proof:
= log, !
=1

Since log, - 1is a concave function, based on Jensen’s inequality, we have

< log, -1
=1
= |ng
L . : 1
Note: If is uniformly distributed over 1, 5,.., ,le., 1= > =..= = -,

= |0g2



S 1.4 Further Results on Information Theory

Fano’s Inequality: Let X and Y be two random variables with realizations in

1y 2 e
Let =Pr # ,then

< + log, —1.
Proof: Let us create a binary variable Z such that

=0,if = Pr

[l
— O
[l
|_\
I

=1if # Pr

Hence, = . Base on the chain rule for entropy,

= -+ =

Note, with the knowledge of X and Y, Z is deterministic and
Also based on the chain rule,

1
+

IA
+



S 1.4 Further Results on Information Theory

Therefore, < +
- =Pr =0 . =0 +Pr =1 o =1,
= 1- 0+ log, —1
= log, —1
Note: is the number of bits required to describe X when X =Y

log, — 1 isthe number of bits required to describe X when # . The
equality is reached when is uniformly distributed over all — 1 values.



S 1.4 Further Results on Information Theory

Data Processing Inequality: Given a concatenated data processing system as

Processor 1

- - forms a Markov chain that holds

We have

IA

Processor 2

v




S 1.4 Further Results on Information Theory

Proof:  Since .= holds,

—log; = —log, =

Similarly, since , = holds,

IA
|
IA
I

Remark: Information cannot be increased by data processing.
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