

《信息论与编码》 《Information Theory and Coding》

Li Chen (陈立)

Professor, School of Electronics and Information Technology (SEIT)

Sun Yat-sen University

Office: 632, SEIT Building

Email: chenli55@mail.sysu.edu.cn

Website: www.chencode.cn

《Information Theory and Coding》

Textbooks:

- 1. 《Elements of Information Theory》, by T. Cover and J. Thomas, Wiley (and introduced by Tsinghua University Press), 2003.
- 2. 《Error Control Coding》, by S. Lin and D. Costello, Prentice Hall, 2004.
- 3. 《信息论与编码理论》, 王育民、李晖著, 高等教育出版社, 2013.

Outlines

Chapter 1: Entropy and Mutual Information (8L/4W)

Chapter 2: Channel Capacity (6L/3W)

Chapter 3: Source Coding (4L/2W)

Chapter 4: Channel Coding (4L/1W)

Chapter 5: Convolutional Codes and TCM (10L/2.5W)

Chapter 6: Turbo Codes (6L/1.5W)

Chapter 7: Reed-Solomon Codes (12L/3W)

L: Lectures / W: Weeks

Evolution of Communications

Analogue comm.

Late 80s to early 90s

Information theory and coding techniques

Digital comm.

Chapter 1 Entropy and Mutual Information

- 1.1 An Introduction of Information
- 1.2 Entropy
- 1.3 Mutual Information
- 1.4 Further Results on Information Theory

Information Theory, founded by Claude E. Shannon (1916-2001)

via "A Mathematical Theory of Communication," Bell System Technical Journal, 1948.

- What is information?
- How to measure information?
- How to represent information?
- How to transmit information and its limit?

What is information?

Let us look at the following sentences

1) I will be one year older next year.

No information

2) I was born in 1993.

Some information

3) I was born in 1990s.

More information

Boring!

Being frank!

Interesting, so which year?

Observation 1: Information comes from uncertainty.

Observation 2: The number of *possibilities* should be linked to the information.

Let us do the following game

Throw a die once

Throw three dies

You have 6 possible outcomes. {1, 2, 3, 4, 5, 6}

Observation 3: Information should be 'additive'.

Let us look at the following problem

Q: If there are 120 students in our class, and we would like to use bits to distinguish each of them, how many bits do we need?

Solution: 120 possibilities requires

 $\log_2 120 = 6.907$ bits

We need at least 7 bits to represent each of us.

Q: There are 7 billion people on our planet, how many bits do we need?

Observation 4: We can use 'logarithm' to scale down the a huge amount of possibilities.

Observation 5: *Bit* (=binary+digit) permutations are used to represent all possibilities.

Finally, let us look into the following game

Pick one ball from the hat randomly,

The probability of picking up a white ball, $\frac{1}{4}$ (25%).

Representing the probability needs

$$\log_2 \frac{1}{1/4} = 2 \text{ bits}$$

The probability of picking up a black ball, $\frac{3}{4}$ (75%)

Representing the probability needs

$$\log_2 \frac{1}{3/4} = 0.415$$
 bits

On average, how many bits do we need to represent an outcome?

$$\frac{1}{4}\log_2\frac{1}{1/4} + \frac{3}{4}\log_2\frac{1}{3/4} = 0.811 \text{ bits}$$

Observation 6: Measure of information should consider the *probabilities of various possible events*.

Events: 1, $2, \ldots, N$

Probabilities: P_1, P_2, \dots, P_N

$$P_1 \log_2 P_1^{-1} + P_2 \log_2 P_2^{-1} + \dots + P_N \log_2 P_N^{-1}$$

- Information: knowledge not precisely known by the recipient, as it is a measure of uncertainty.
- Amount of information \propto (probability of occurance)⁻¹ E.g., given messages $M_1, M_2, ..., M_q$ with prob. of occur. $P_1, P_2, ..., P_q$ $(P_1 + P_2 + ... + P_q = 1)$, measure of amount of information carried by each message is

$$I(M_i) = \log_x P_i^{-1}, \quad i = 1, 2, ..., q$$

$$x = 2, I(M_i) \text{ in bits}$$

$$x = e, I(M_i) \text{ in nats}$$

$$x = 10, I(M_i) \text{ in Hartley.}$$

- Properties of the measurement
 - 1) $I(M_i) \rightarrow 0$, if $P_i \rightarrow 1$;
 - 2) $I(M_i) \ge 0$, when $0 \le P_i \le 1$;
 - 3) $I(M_i) > I(M_i)$, if $P_i > P_i$
 - 4) Given M_i and M_j are statistically independent, $I(M_i \& M_i) = I(M_i) + I(M_i)$.

Information ←→ 信息

《暮春怀故人》

李中(唐)

池馆寂寥三月尽,落花重叠盖莓苔。 惜春眷恋不忍扫,感物心情无计开。 梦断美人沈<u>信息</u>,目穿长路倚楼台。 琅玕绣段安可得,流水浮云共不回。

How to measure information?

Given a source vector of length N. It has N possible symbols $S_1, S_2, ..., S_N$, with a probability of occurrence of $P_1, P_2, ..., P_N$, respectively.

To represent the source vector, we need

$$I = \sum_{i=1}^{N} NP_i \log_2 P_i^{-1} \text{ bits}$$

On average, how many bits do we need for a source symbol?

$$H = \frac{I}{N} = \sum_{i=1}^{N} P_i \log_2 P_i^{-1} \text{ bits/symbol}$$

H is called the <u>source entropy</u> - average amount of information per source symbol. It can also be understood as the expectation of function $\log_2 P_i^{-1}$

$$H = \mathbb{E}[\log_2 P_i^{-1}]$$
 bits/symbol

Example 1.1: A source vector contains symbols of four possible outcomes A, B, C, D. They occur with probabilities of $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{3}$, $P(D) = \frac{1}{12}$, respectively. Entropy of the source vector can be determined as

$$H = \frac{1}{4}\log_2\frac{1}{1/4} + \frac{2}{3}\log_2\frac{1}{1/3} + \frac{1}{12}\log_2\frac{1}{1/12}$$

= 1.856 bits/symbol

Note: If
$$P(A) = P(B) = P(C) = P(D) = \frac{1}{4}$$

$$H = 4 \cdot \frac{1}{4} \log_2 4 = 2 \text{ bits/symbol}$$

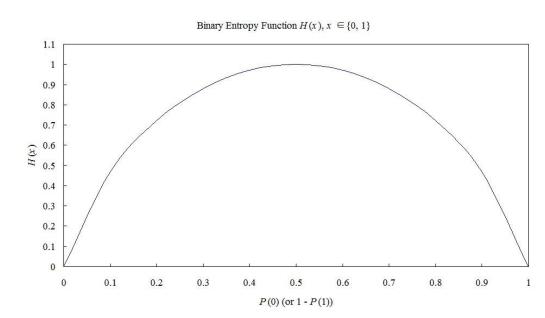
Entropy of a binary source: The vector has only two possible symbols, i.e., 0 and 1. Let P(0) denote the probability of a source symbol being 0, and P(1) denote the probability of a source symbol being 1, we have

$$H = P(0) \cdot \log_2 P(0)^{-1} + P(1)\log_2 P(1)^{-1}$$

or

$$H = P(0) \cdot \log_2 P(0)^{-1} + (1 - P(0)) \cdot \log_2 (1 - P(0))^{-1}$$

Binary Entropy Function



Entropy of different bases can be interchanged by

$$H_b(x) = H_a(x)\log_b a$$

Proof:

$$H_a(x) = \mathbb{E}[-\log_a P(x)]$$

$$H_a(x)\log_b a = \frac{\lg a}{\lg b} \mathbb{E}\left[-\frac{\lg P(x)}{\lg a}\right]$$

$$= \mathbb{E}\left[-\frac{\lg P(x)}{\lg b}\right]$$

$$= \mathbb{E}[-\log_b P(x)]$$

$$= H_b(x)$$

- Entropy for two random variables *X* and *Y*.
- Realizations of *X* and *Y* are *x* and *y*.
- Distributions of *X* and *Y* are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, y),

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(x,y)$$
$$= -\mathbb{E}[\log_2 P(x,y)]$$

Condition Entropy H(Y|X):

$$H(Y|X) = \sum_{x \in X} P(x)H(Y|X = x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x)P(y|x)\log_2 P(y|x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x,y)\log_2 P(y|x) = -\mathbb{E}[\log_2 P(y|x)]$$

The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

$$H(X,Y) = H(X) + H(Y|X)$$
$$= H(Y) + H(X|Y)$$

If X and Y are independent, H(X|Y) = H(X)

Hence,

$$H(X,Y) = H(X) + H(Y)$$

Proof:

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(x,y)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 (P(y|x)P(x))$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(x) - \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(y|x)$$

$$= -\sum_{x \in X} P(x) \log_2 P(x) - \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(y|x)$$

$$= H(X) + H(Y|X)$$

The above chain rule can be extended to

(1)
$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$

(2)
$$H(X_1, X_2, ..., X_N) = \sum_{i=1}^N H(X_i | X_{i-1}, X_{i-2}, ..., X_1)$$

Proof:

$$H(X_1, X_2) = H(X_1) + H(X_2|X_1)$$

$$H(X_1, X_2, X_3) = H(X_1) + H(X_2, X_3 | X_1)$$

= $H(X_1) + H(X_2 | X_1) + H(X_3 | X_2, X_1)$

:

$$H(X_1, X_2, ..., X_N) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_N|X_{N-1}, X_{N-2}, ..., X_1)$$

- Two random variables *X* and *Y*.
- Realizations of *X* and *Y* are *x* and *y*.
- Distributions of *X* and *Y* are P(x) and P(y).
- Joint distribution of X and Y is P(x, y).
- Conditional distribution of X is P(x|y).

Mutual Information between *X* and *Y*:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 \frac{P(x|y)}{P(x)}$$
$$= \mathbb{E}\left[\log_2 \frac{P(x|y)}{P(x)}\right]$$

$$\frac{P(x|y)}{P(x)} = \frac{P(x,y)}{P(x)P(y)}$$

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)} = \mathbb{E}\left[\log_2 \frac{P(x,y)}{P(x)P(y)}\right]$$

Note: If X and Y are independent, P(x)P(y) = P(x, y), I(X; Y) = 0.

Mutual Information's Relationship with Entropy:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Proof:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

$$= \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 P(x,y) - \sum_{x \in X} P(x) \log_2 P(x) - \sum_{y \in Y} P(y) \log_2 P(y)$$

$$= H(X) + H(Y) - H(X,Y)$$

Note: The above proof also shows the symmetry of mutual information as

$$I(X;Y) = I(Y;X)$$

Mutual Information's Relationship with Entropy:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

This relationship can be visualized in the Venn diagram

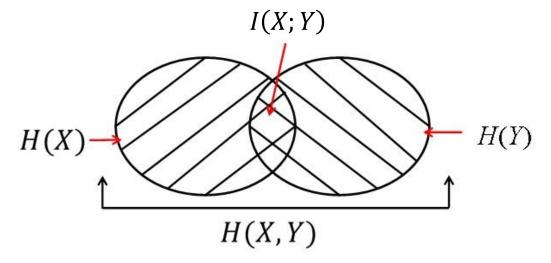


Fig. A Venn diagram

Corollary:

$$I(X;Y) = H(X) - H(X|Y)$$
$$= H(Y) - H(Y|X)$$

This can also be concluded using the chain rule.

Notes:

- 1) $0 \le I(X; Y) \le \min\{H(X), H(Y)\}.$
- 2) If $H(X) \sqsubset H(Y)$, I(X;Y) = H(X). Similarly if $H(Y) \sqsubset H(X)$, I(X;Y) = H(Y).
- 3) I(X; X) = H(X) H(X|X) = H(X)

Entropy is also called self information

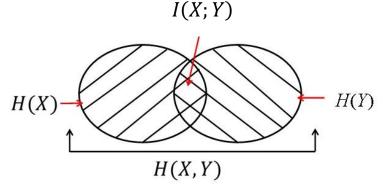


Fig. A Venn diagram

The chain rules for arbitrary number of variables

For entropy,

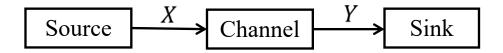
$$H(X_1, X_2, ..., X_N) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_N|X_{N-1}, X_{N-2}, ..., X_1)$$

$$= \sum_{i=1}^{N} H(X_i|X_{i-1}, X_{i-2}, ..., X_1)$$

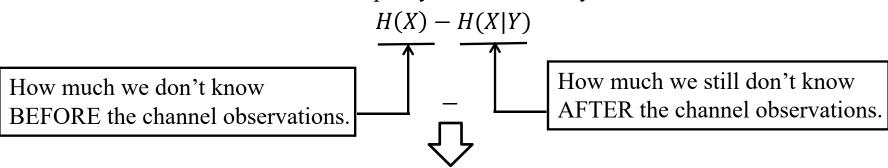
For mutual information,

$$\begin{split} I(X_1,X_2,...,X_N;Y) &= H(X_1,X_2,...,X_N) - H(X_1,X_2,...,X_N|Y) \\ &= \sum_{i=1}^N H(X_i|X_1,X_2,...,X_{i-1}) - \sum_{i=1}^N H(X_i|X_1,X_2,...,X_{i-1},Y) \\ &= \sum_{i=1}^N H(X_i|X_1,X_2,...,X_{i-1}) - H(X_i|X_1,X_2,...,X_{i-1},Y) \\ &= \sum_{i=1}^N I(X_i;Y|X_1,X_2,...,X_{i-1}) \end{split}$$

Mutual Information of a Channel



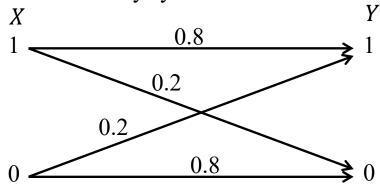
- Consider *X* is the transmitted signal, *Y* is the received signal.
- *Y* is a variant of *X* where the discrepancy is introduced by channel.



How much information is carried by the channel, and this is called the mutual information of the channel, denoted as I(X; Y).

Note: Mutual information I(X; Y) describes the amount of information one variable X contains about the other Y, or vice versa as in I(X; Y).

Example 1.2: Given the binary symmetric channel shown as



We know
$$P(x = 0) = 0.3$$
, $P(x = 1) = 0.7$, $P(y = 1|x = 1) = 0.8$, $P(y = 1|x = 0) = 0.2$, $P(y = 0|x = 1) = 0.2$ and $P(y = 0|x = 0) = 0.8$.

Please determine the mutual information of the channel.

Solution: We may determine the channel mutual information by I(X;Y) = H(X) - H(X|Y)

- Entropy of the binary source is

$$H(X) = -P(x = 0)\log_2 P(x = 0) - P(x = 1)\log_2 P(x = 1)$$

$$= 0.3 \cdot \log_2 \frac{1}{0.3} + 0.7 \cdot \log_2 \frac{1}{0.7}$$

$$= 0.881 \text{ bits/symbol}$$

- With P(x) and P(y|x), we know

$$P(y = 1) = P(y = 1|x = 1)P(x = 1) + P(y = 1|x = 0)P(x = 0)$$

$$= 0.62$$

$$P(y = 0) = P(y = 0|x = 1)P(x = 1) + P(y = 0|x = 0)P(x = 0)$$

$$= 0.38$$

$$P(x = 0, y = 0) = P(y = 0|x = 0)P(x = 0) = 0.24$$

$$P(x = 0|y = 0) = \frac{P(x = 0, y = 0)}{P(y = 0)} = 0.63$$

$$P(x = 1, y = 0) = P(y = 0|x = 1)P(x = 1) = 0.14$$

$$P(x = 1|y = 0) = \frac{P(x = 1, y = 0)}{P(y = 0)} = 0.37$$

$$P(x = 0, y = 1) = P(y = 1|x = 0)P(x = 0) = 0.06$$

$$P(x = 0|y = 1) = \frac{P(x = 0, y = 1)}{P(y = 1)} = 0.10$$

$$P(x = 1, y = 1) = P(y = 1|x = 1)P(x = 1) = 0.56$$

$$P(x = 1|y = 1) = \frac{P(x = 1, y = 1)}{P(y = 1)} = 0.90$$

• Hence, the conditional entropy is:

$$H(X|Y) = P(x = 0, y = 0)\log_2 \frac{1}{P(x = 0|y = 0)} + P(x = 1, y = 0)\log_2 \frac{1}{P(x = 1|y = 0)} + P(x = 0, y = 1)\log_2 \frac{1}{P(x = 0|y = 1)} + P(x = 1, y = 1)\log_2 \frac{1}{P(x = 1|y = 1)} = 0.24\log_2 \frac{1}{0.63} + 0.14\log_2 \frac{1}{0.37} + 0.06\log_2 \frac{1}{0.10} + 0.56\log_2 \frac{1}{0.90} = 0.644 \text{ bits/sym.}$$

• The mutual information is:

$$I(X; Y) = H(X) - H(X|Y) = 0.237$$
 bits/sym.

Note: You may try to solve the same problem through

$$I(X;Y) = H(Y) - H(Y|X)$$

Relative Entropy: Assume X and \widehat{X} are two random variables with realizations of x and \widehat{x} , respectively. They aim to describe the same event, with probability mass functions of P(x) and $P(\widehat{x})$, respectively. Their relative entropy is

$$D(P(x), P(\hat{x})) = \sum_{x \in \text{supp } P(x)} P(x) \log_2 \frac{P(x)}{P(\hat{x})}$$
$$= \mathbb{E}\left[\log_2 \frac{P(x)}{P(\hat{x})}\right]$$

- It is often called the **Kullback-Leibler distance** between two distributions P(x) and $P(\hat{x})$.
- It is a measure of inefficiency by assuming a distribution $P(\hat{x})$ when the true distribution is P(x). E.g., an event can be described by an average length of H(P(x)) bits. However, if we assume its distribution is $P(\hat{x})$, we will need an average length of $H(P(x)) + D(P(x), P(\hat{x}))$ bits to describe it.
- It is not symmetric as $D(P(x), P(\hat{x})) \neq D(P(\hat{x}), P(x))$.

Example 1.3:

Let
$$X$$
: A B C D

$$P(x): \frac{1}{4} \frac{1}{2} \frac{1}{8} \frac{1}{8}$$

$$P(\hat{x}): \frac{3}{8} \frac{2}{5} \frac{1}{10} \frac{1}{8}$$

$$H(P(x)) = 1.75 \text{ bits/symbol}$$

$$H(P(\hat{x})) = 1.805 \text{ bits/symbol}$$

$$D(P(x), P(\hat{x})) = \frac{1}{4}\log_2\frac{1/4}{3/8} + \frac{1}{2}\log_2\frac{1/2}{2/5} + \frac{1}{8}\log_2\frac{1/8}{1/10} + \frac{1}{8}\log_2\frac{1/8}{1/8}$$

If
$$P(x_i) = P(\widehat{x_i})$$
, no extra bits;

If
$$P(x_i) < P(\hat{x_i})$$
, less extra bits;

If
$$P(x_i) > P(\widehat{x_i})$$
, more extra bits.

- Corollary 1: When $P(x) = P(\hat{x}), D(P(x), P(\hat{x})) = 0$.
- Corollary 2: $D(P(x), P(\hat{x})) \ge 0$.

Proof:
$$-D(P(x), P(\hat{x})) = \sum_{x \in \text{supp } P(x)} P(x) \log_2 \frac{P(\hat{x})}{P(x)}$$

$$\leq \sum_{x \in \text{supp } P(x)} P(x) \left(\frac{P(\hat{x})}{P(x)} - 1\right) \log_2 e$$

$$= \left(\sum_{x \in \text{supp } P(x)} P(\hat{x}) - \sum_{x \in \text{supp } P(x)} P(x)\right) \log_2 e$$

$$\leq (1 - 1) \log_2 e$$

$$= 0$$

IT Inequality: Given
$$b > 1$$
 and $\varepsilon > 0$

$$\left(1 - \frac{1}{\varepsilon}\right) \log_b e \le \log_b \varepsilon \le (\varepsilon - 1) \log_b e$$

Example 1.4: The true distribution P(x) is given. If we assume a distribution of $P(\hat{x}_i) = \frac{1}{k}$ for i = 1, 2, ..., k to describe the same event, then

$$D(P(x), P(\hat{x})) = \mathbb{E}\left[\log_2 \frac{P(x)}{P(\hat{x})}\right] = \mathbb{E}[\log_2 k P(x)]$$

$$= \mathbb{E}[\log_2 k] + \mathbb{E}[\log_2 P(x)]$$

$$= \mathbb{E}[\log_2 P(\hat{x})^{-1}] - \mathbb{E}[\log_2 P(x)^{-1}]$$

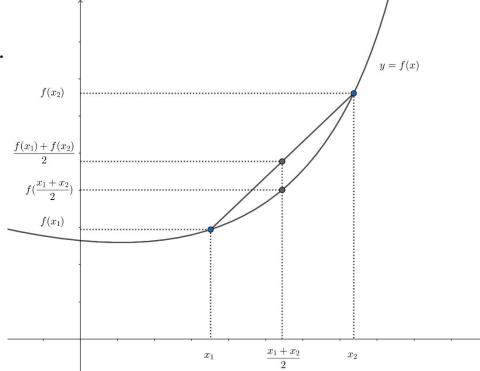
$$= H(P(\hat{x})) - H(P(x))$$

Convex Function: A function f(x) is convex (\Box) over the interval (a, b) if $\forall x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

It is strictly convex if the equality holds when $\lambda = 0$ or $\lambda = 1$.

- If f(x) is convex, -f(x) is concave (\square) .



- Example 1.5: $\log_2 \frac{1}{x}$ is strictly convex over $(0, \infty)$.

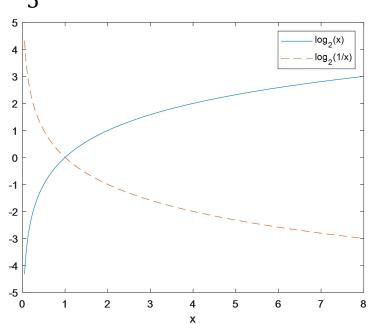
Let
$$x_1 = 2$$
, $x_2 = 5$ and $\lambda = 0.5$,

$$\log_2 \frac{1}{0.5 \times 2 + 0.5 \times 5} = -1.81$$

$$0.5 \times \log_2 \frac{1}{2} + 0.5 \times \log_2 \frac{1}{5} = -1.66$$

When $\lambda = 0$ or $\lambda = 1$, the equality holds.

Note that $log_2 x$ is concave.



Jensen's Inequality: If function f(x) is convex, then

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)].$$

Proof: With two mass points x_1 and x_2 and distributions of p_1 and p_2 , the convexity implies

$$f(p_1x_1 + p_2x_2) \le p_1f(x_1) + p_2f(x_2).$$

Assume this is also true for k-1 mass points that

$$f(p_1x_1 + \dots + p_{k-1}x_{k-1}) \le p_1f(x_1) + \dots + p_{k-1}f(x_{k-1}).$$

For k mass points that substantiate $\sum_{i=1}^{k-1} p_i + p_k = 1$, we have

$$f(p_1x_1 + \dots + p_{k-1}x_{k-1}) + p_kf(x_k) \le p_1f(x_1) + \dots + p_kf(x_k) = \sum_{i=1}^k p_if(x_i)$$

Let
$$p'_i = \frac{p_i}{1 - p_k}$$
, for $i = 1, 2, ..., k - 1$.
$$\sum_{i=1}^k p_i f(x_i) = \sum_{i=1}^{k-1} (1 - p_k) p'_i f(x_i) + p_k f(x_k)$$

$$\geq (1 - p_k) f\left(\sum_{i=1}^{k-1} p'_i x_i\right) + p_k f(x_k)$$

$$\geq f\left(\sum_{i=1}^{k-1} (1 - p_k) p'_i x_i + p_k x_k\right)$$

$$= f\left(\sum_{i=1}^k p_i x_i\right)$$

Note: If function f(x) is concave, $\mathbb{E}[f(x)] \le f(\mathbb{E}[x])$.

- Jensen's inequality can help prove some properties on entropy and mutual information.
- Corollary 2: $D(P(x), P(\hat{x})) \ge 0$

Proof:

$$-D(P(x), P(\hat{x})) = \sum_{x \in \text{supp } P(x)} P(x) \log_2 \frac{P(\hat{x})}{P(x)}$$

$$\leq \log_2 \sum_{x \in \text{supp } P(x)} P(\hat{x})$$

$$\leq \log_2 1 = 0$$

- Corollary 3: $I(X; Y) \ge 0$

Proof:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$
$$= D(P(x,y), P(x)P(y)) \ge 0$$

I(X; Y) = 0 only if P(x, y) = P(x)P(y), i.e., X and Y are independent.

- Corollary 4 (Maximum Entropy Distribution):

Given variable $X \in \{x_1, x_2, ..., x_U\}$, with a distribution of $P_1, P_2, ..., P_U$. We have

$$H(X) \leq \log_2 U$$

Proof:

$$H(X) = \sum_{i=1}^{U} P_i \log_2 P_i^{-1}$$

Since $log_2(\cdot)$ is a concave function, based on Jensen's inequality, we have

$$H(X) \le \log_2 \left(\sum_{i=1}^U P_i P_i^{-1} \right)$$
$$= \log_2 U$$

Note: If X is uniformly distributed over $x_1, x_2, ..., x_U$, i.e., $P_1 = P_2 = ... = P_U = \frac{1}{U}$, $H(X) = \log_2 U$

Fano's Inequality: Let X and Y be two random variables with realizations in $\{x_1, x_2, ... x_k\}$. Let $P_e = \Pr[X \neq Y]$, then

$$H(X|Y) \le H(P_e) + P_e \log_2(k-1).$$

Proof: Let us create a binary variable Z such that

$$Z = 0$$
, if $X = Y$ \Rightarrow $Pr(Z = 0) = 1 - P_e$
 $Z = 1$, if $X \neq Y$ \Rightarrow $Pr(Z = 1) = P_e$

Hence, $H(Z) = H(P_e)$. Base on the chain rule for entropy,

$$H(XZ|Y) = H(X|Y) + H(Z|XY) = H(X|Y)$$

Note, with the knowledge of X and Y, Z is deterministic and H(Z|XY) = 0. Also based on the chain rule,

$$H(XZ|Y) = H(Z|Y) + H(X|YZ)$$

$$\leq H(Z) + H(X|YZ)$$

Therefore, $H(X|Y) \le H(Z) + H(X|YZ)$.

$$-H(Z) = H(Pe)$$

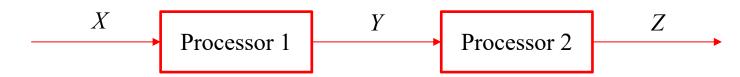
$$-H(X|YZ) = \Pr(Z = 0) H(X|Y, Z = 0) + \Pr(Z = 1) H(X|Y, Z = 1).$$

$$= (1 - P_e) \cdot 0 + P_e \log_2(k - 1)$$

$$= P_e \log_2(k - 1)$$

Note: $H(P_e)$ is the number of bits required to describe X when X = Y; $\log_2(k-1)$ is the number of bits required to describe X when $X \neq Y$. The equality is reached when X is uniformly distributed over all k-1 values.

Data Processing Inequality: Given a concatenated data processing system as



 $X \rightarrow Y \rightarrow Z$ forms a Markov chain that holds

$$P(x, y, z) = P(z|y) \cdot P(x, y) = P(z|y) \cdot P(y|x) \cdot P(x)$$

$$P(z|x, y) = P(z|y)$$

$$P(x|y, z) = P(x|y)$$

We have

$$I(X;Z) \le \left\{ \begin{array}{l} I(X;Y) \\ I(Y;Z) \end{array} \right.$$

Proof: Since P(z|x, y) = P(z|y) holds,

$$H(Z|XY) = \mathbb{E}[-\log_2 P(z|xy)] = \mathbb{E}[-\log_2 P(z|y)] = H(Z|Y)$$

Similarly, since P(x|y, z) = P(x|y) holds,

$$H(X|ZY) = H(X|Y)$$

$$I(X; Z) = H(X) - H(X|Z)$$
 $I(X; Z) = H(Z) - H(Z|X)$
 $\leq H(X) - H(X|ZY)$ $\leq H(Z) - H(Z|XY)$
 $= H(X) - H(X|Y)$ $= H(Z) - H(Z|Y)$
 $= I(X; Y)$ $= I(Y; Z)$

Remark: Information cannot be increased by data processing.

References:

- [1] Elements of Information Theory, by T. Cover and J. Thomas.
- [2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.